
1",.1. S,,/lds S,ruourc" VuL :.:'. ", II. pp. I ~II IJ':5. lL1~"

Pnnh."lI In Great flntaln

00':0- ~M.l 1''' SJon _ uu
I' Il.,IHQ Pcr~am,.n Pn,.",,!'> pil.;

CRACK PATHS IN PLANE SITUATIONS-I.
GENERAL FORM OF THE EXPANSION OF THE

STRESS INTENSITY FACTORS

J. B. LEBLONOt
Laboratoire de M.:canique des Solides. Ecole Polytechnique. Palaiseau. France

(Rt'cein:d 18 Ft'hruary 1988; in rer:ised form 9 February 1989)

Abstract-The aim of this series of papers is to provide formulas for the geometrical parameters
(branching angle. curvature) of a crack propagating in the most general plane situation. These
formulas can be used for numerical predictions of crack paths. .

The first paper addresSt."S the problem of establishing the gt'neral form of the first three terms of
the expansion of the stress intensity factors in powers of the crack extension length. i.e. ofspecifying
the geometrical and m~'Chanical parameters they depend upon. The treatment is based on two main
elements: dimenskmal ,,"alysis (scale changes) and regularity properties (continuity. differ­
entiahility) of the stresses with res~'Ct to the crack extension length. It is shown that most terms
have lI"ilw,ml expressions in the sense that they depend only on the parameters characterizing the
local geometry of the crack and its extension and the stress field near the initial crack tip. whatever
the geometry llf the hl1dy under cOllsideratilm and the prescri~-d forces or displacements.

I. INTROOllCTION

Predicting crack paths is ~t popular problem in LErM. Most works devoted to this question
are restricted to the simpler case of two-dimensional situations (plane strain conditions).

It is clear that the prediction must necessarily be numerical at some stage. Indeed it
relJuires the knowledge of the stress intensity factors (Sirs) at the tip of the propagating
crack. and there is no hope that an analytic.tl. explicit formula will ever provide the SI Fs
in the most general plane situation (arbitrary geometry of the body and the crack. arbilrary
loading).

The simplest approach consists in modelling the cmck as a succession of straight
segmcnts. At each step. once the SIFs at the present crack tip h~tve been evaluated numeri­
cally, the branching angle must be deduced from some propagation criterion. for instance
the "maximulll hoop stress criterion" (Erdogan and Sih. 1963) or the "principle of local
symmetry" (PLS) (Goldstein and Salg~ll1ik. 1974). This method has been used notably by
Murakami (1980) and Swenson and IngralTea (1987). Even in this simple approach. a
number of theoretical problems remain unsolved. For instance. no decisive argument has
been put forward up to now with regard to the choice which should be made among
existing propagation criteria. Moreover. the usc of some of these, notably the PLS, relJuires
knowledge of the Sirs just after the kink. and the formulas expressing these SIFs in terms
or those just before the kink and the branching angle have been established only in a very
particular case: infinite body, uniform forces at infinity, straight initial crack (Bilby el a/.•
1977; Wu. 197Xa. b; Amestoy ('I a/.• 1979). However these theoretical dilliculties have
almost no practical consequences; it is known for instance that all existing criteria lead to
very similar numerical predictions. This approach can therefore be rated as operational.

In a more sophistica ted approach. the crack is modelled as a succession ofcurved arcs.
with or without kink angles between them. This has been done by Sumi (1986a. b). using
the PLS as a criterion. It is then necessary to specify. at each step of the numerical procedure.
not only the bmnching angle (if there is one) but also the curvature of the crack extension.
This is achieved by using an analytical expansion of the SIFs in powers of the length s of
the cmck extension, where the influence of the curvature of the extension appears in an
explicit way, and deducing the value of this parameter from the condition that the SIF

t Present address: LalJoratoire de Modelisation en Mecaniquc. Tour 66. Universite Paris VI. 4 Place Jussieu.
75005 Paris. France.
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corresponding to mode ~ must vanish along the propagation path. as required by the PLS.
This raises the problem of obtaining such an expansion. or at least its first terms.

This theoretical problem is obviously difficult and has received only partial solutions
up to now. These solutions can be divided into two classes. The first is composed ofsolutions
which are rigorously exact but valid only for particular geometries and loadings. Chatterjee
(1975). using Muskhelishvili's method. considered for instance the problem of a crack
consisting of two straight branches in an infinite medium loaded by uniform forces at infinity.
The length S of the secondary branch was arbitrary so that the results obtained (which were
expressed in a purely numerical form) contained implicitly all the terms of the expansion
of the SIFs in powers of s; but this expansion was obviously of limited applicability. The
second term (proportional to j:;) of the expansion of the SIFs was studied in the same
particular case by Bilby and Cardew (1975). using the previous work of Khrapkov (1971).
and later by Amestoy el al. (1986). by a different method and in a more complete way.

The second class is composed of approximate expansions for nearly straight cracks.
Cotterell and Rice (1980) used a perturbation method devised by Banichuk (1970) to study
a nearly straight crack in an infinite body. The work of Karihaloo el al. (1981) was restricted
to the case of a straight initial crack. but these authors carried out their analysis to a higher
order with respect to the small parameters characterizing the deviations of the crack
extension from straightness. Sumi el al. (1983) also considered a nearly straight extension
of a straight initial (edge) crack. but in a body of arbitrary geometry. Their work is of
considerable interest since among the few available expansions. theirs is the only one which
applies to bodies of finite dimensions. It was this expansion that Sumi (1986a. b) used for
numerical predictions of crack paths. It is still however of limited applicability. and its usc
in cases where its conditions of validity arc not fultilled certainly Ie:lds to errors. though
these have not been quantified. This rem:lrk applies in particular to Sumi's work (1986'1. b).

The aim of the present work is to obtain the beginning of the expansion of the SI Fs
in powers of the lengths of the (kinked and curved) crack extension. in the most gencral
case: arbitrary geometry of the hody. the crack and its extension. with arbitrary loading.
We will restrict our attention to the li.-st threc terms of this expansion (proportional
respectively to .1''' = 1• .1'" 2 and .1'1 = .1') bccause. as will appcar. this is sullicient to obtain the
exprcssion of the curvature at all points or the propagation path. Ilowever, extending the
analysis to higher orders in .I' would not raise any Jilliculty of principle; one would then
obtain the expression of the derivative of the curvature with respect to s. of its second
derivative. and so on.

It is improbable that analytical methods can solve very general problems. Therefore
our objective requires the use of new methods which should not be completely analytical
in nature. The approach adopted here is as follows.

We will start by establishing, in this paper, the general Jimn of the successive terms of
the expansion of the SI Fs in an arbitrary situation; this means specifying the various
geometrical and mechanical parameters they depend upon. The arguments used will be of
very general nature, based essentially on dimensional analysis (scale changes) and on
regularity properties (continuity, differentiability) of the stresses at a lixed point with respect
to s.

In further papers we will identify the various functions appearing in the expansion by
considering some special cases where the solution can be obtained by analytical means. The
problem of the propagation criterion will then be studied. It will be shown not:lbly that
purely logical considerations of internal coherence within the linear elastic model lead to
the PLS as the only possible criterion. We will conclude by combining this criterion with
the expansion of the SIFs derived previously to derive formulas for the geometric parameters
of the crack extension. which can be used in numerical applications.

This paper is organized as follows. Arter having stated general hypotheses and
notations in Section 2. we establish in Section 3 the continuity of the displacement and
stresses at a fixed point of the body when a kink occurs on the crack. This property is used
in Section 4 to show that the SIFs just after the kink depend only on those just before the
kink and the branching angle. whatever the geometry of the body. the crack and its extension
and the prescribed forces or displacements; this means that the formulas established by
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Fig. I. Definition of the general problem studied.
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Bilby et al. (1977). Wu (1978a. b) and Amestoy et al. (1979) in a particular case are in fact
of unil'ersal value. We refine in Section 5 the results of Section 3 by showing that the
displacement and stresses at a fixed point are differentiable with respect to the length s of
the (kinked and curved) crack extension at s = O. and that the corresponding derivatives
are independent of the cu.rvature of the extension. These properties are used in Sections 6
and 7 to study the second and third terms of the expansion of the SIFs (proportional to
Sl =and Sl =s). These terms are expressed as sums of quantities. most of which are again
of /lttil'er.ml character. in the sense that they depend only on local parameters describing
the geometry of the crack and its extension (branching angle. curvature parameters) and
the ittitial stress field (SI Fs. non-singular stress ...). without any explicit reference to the
far geometry of the body nor to the 1001ding imposed on its boundary. However the third
term of the exp.tnsion is shown to involve one flofl-uflitwslli quantity. which depends on
the geometry of the entire body under consideration .lOd must therefore be ev.lluated in
eadl particular case. rinally we outline in conclusion a numerical method for crack path
predictions based on these results.

2. STATEMENT OF TtlE I'RonLEM

Wc consider (Fig. I) the general problem of an clastic body 0 under plane strain
conditions, containing a curvilinear crack. The boundary of this body. including the lips of
the crack. is subjected to c:mtstanl (with respect to time)t prescribed line tractions t P on a
portion DO, and to c:onstant prescribed displacements uP on the complementary part VON'
The lips of the crack are supposed to be traction-free in the vicinity of the crack tip and to
remain traction-free upon subsequent propagation: we exclude thus the case of a crack
loaded by an internal pressure due to a fluid. There are no body forces.

At the instant considered. the crack extends up to a point O. where its curvature is C.
The subsequent crack extension makes an initial angle ttm ( - I < 111 < + I) with the tangent
OX 1 to the crack at the point O. (The case of regular propagation with a continuously
varying tangent will be treated as a particular case where m takes the value 0). The length
of the extension will be denoted s and the distance along the extension from the point 0 to
an arbitrary point. s'. 0YIY2 being an orthonormal coordinate system with first axis directed
along the t.tngent to the extension at the point O. the equation of the extension will be
supposed to be of the form

(I)

where a* and C* are parameters.t It is proved in Appendix A that crack extensions of that

t In fact. except in the case of subcritical propagation. (quasistatic) propagation of the crack is possible only
if the load applied varies. This variation will be introduced in the subsequent papers; it will be shown notably
that for proportional loadings, it has no influence on the propagation path.

: The notations 0 and 0 are used throughout this paper. It is recalled that a function is O(.t") if it is bounded
by some constant times.t" for x - O. and o(x") ifit is of the form x"[(:c) with lim/(x) "" O.
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shape must necessarily be considered. if these extensions are to be obtainable by actual
propagation of the crack and not simply by arbitrary machining of the body. and if
propagation is to obey the PLS.

The general object of our study is the expansion of the SIFs k,(s). k~(s) at the tip of
the extended crack in powers of s.

3. CONTINUITY OF THE DISPLACEMENT AND STRESSES AT A FIXED POINT WITH
RESPECT TO THE CRACK EXTENSION LENGTH

The aim of this section is to establish that at a fixed point M of the hoc(l'. the stresses
are continuous Il'ith respect to .I' at s = O. i.e. they do not undergo a sudden jump when the
kink occurs. In l~lct our proof will apply to the displacement as well as to the stresses.

We consider the body in two situations. In the first one. the crack ends up at the point
O. and the displacement at Mis u(M). The crack extension can be supposed to be opened
over a lengths provided suitable tractions t±(s') are exerted on its upper (+) and lower
(-) lips: these tractions are O(s' - II;). In the second situation. the crack is extended further
over a length s. i.e. the tractions just mentioned are released. The displacement at lvl is then
u(M.s).

Taking the difference between these two situations. we obtain what will he called
problem A. In this problem a zero traction is imposed on DO,. a zero displacement on ('0".
and tractions - t t (s') are exerted on the lips of the crack extension. The displacement at
Mis u(I\1.s) -u(M).

(c,. c~) being an orthonormal basis. we deline a problem B as follows: the crack extends
over a length s from the point (); a zero traction is imposed on ('0,. a zero displacement
on ,'0". and ,1 unit point force in the direction c, is exerted on the point M. The rcsulting
displacements on the lips of the crack extension arc denoted VIii f. (M. s. s').

Application of Belli's theorem to problcms A ami n yields

u,(M. s) -u,(.\-I) = - I' [t' (.0' VI') f (M•.1'• .1") + t (.1")' VI'I (M. s. s')1 ds'.JII

Dil1crentiating this equation with respect to the coordinates XI of M. we get also

The quantities ("VI'I i/iJx)(M.s•.1") in this equation can be interpreted as the displacements
on the lips of the cnlck induced by a unit "dipole" at /Ir!. i.e. two infinite opposite forces
parallel to c, applied on points separated by an infinitesimal vector collinear to c/. the
distance between the points times the intensity of the forces being equal to unity.

LetA and B be upper bounds for IV"Ii(M.s.s')1 and IC:V"li/iix,(M.s.s')I.t Then

IU,(M.s)-u,(M)1 ~ A I' (It+(s')I+ltJII

I" , I I'"Ii, (Ii,
,. (/\4• .\')- ,(M) ~ B (It'(s')I+lt
(Xi (X j II

(.1")1) ds';

(.1") j) d.l".

t,·fil !:

t ~",. (.\1. s..,) and· .- (MO'f•.f·) arc olwiously boundcd fum:lions or .,' ror cvery s. i.c.
(·x,

I
,V" • IIV'·"(.U..,•.")I ~ C,(.\·). , (.U.sj) ~ (',(s) for alls'.O < s' < s;
('.'",

il is implicitly assumcd hcre thai for sufficicntly small valucs of s. they arc in fact hllundcd funclions of hoI" .v'
(/"rI s. i.c. C(.') and C ,(.,) arc bounded func1ions of s. Thc oppositc would mcan that whcn the Icnglh s of Ihc
crack c:\tcnsion is shrunk to lcrn. some pari of this c:\lcnsion gocs to inlinity undcr Ihc dTcct of the poinl force
or thc "dipolc" OIl .\f!
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Fig. 2. Edge crack in a circular disk.

DIS

Since t± (.'I') is 0(.'1' - I 2). these inequalities imply that 1II,(M. s) -11,( ,\.I)I and 1«('II,(cx) x
(M.s)-«('II,!('x,)(M)1 are O(j.;). Therefore the displacement and its gradient (and
hence the stresses) arc continuous with respect to s at s = O.

It must be stressed that this continuity property is satisfied only because the dis­
placement and the stresses arc considered at a point the position of which is fixed i1Uk­
I'cfId(,fItly of I"al oj I"l' crack lip. Quantities such as the SI Fs. which chamcterize the stress
tkld ncar the moving singularity. arc known to be discontinuous at s = 0 when the crack
cxtension makes a non-zero angle with the initial crack.

4. STRESS INTENSITY FM..IORS JUST M'TER TilE KINK

We will now study the limit k* = (kr.k!) ofk(s) = [k l (s).k 2(s») when .'I tends towards
zero. More specilically. it will be shown that kr and k! depend only on the SIFs k I. kdust
before the kink and the branching angle 1W'. This means in fact extending the validity of
the formulas for the k;s established by Bilby el al. (1977). Wu (1978a. 0) and Amestoy ('I

al. (1979) in a particular case (stmight initial crack. straight extension. intinite body.
uniform forces at inlinity) to fully general situations.

We suppose first that the body is a circular disk of centre 0, of radius R. subjected to
prescribed tractiofls and containing a traclion-free edge crack (Fig. 2). rand 0 denoting
polar coordinates with respect to the Ox 1 axis, let teO) = [u~,(O). Uri/(O») be the traction
prescribed and .1 = :t(O)} the force field defined by this traction. The SI Fs at the tip of the
extended crack arc a continuous functional of this force field and all the geometric pa­
rameters of the probkm, linear with respect to J. This can be written symbolically

k(s) = 2 1 (111, R, C, a*, C*, s,.~), (2)

omilling for simplicity indications ofdependence upon the remaining geometric parameters.
namely the derivatives of the curvature of the main crack at the point 0 and parameters
characterizing the crack extension shape to higher degrees of accumcy than cJ* and C*.
(That this omission is valid will be shown below.)

Let us consider a new structure identical to the first one, except that all dimensions
arc multiplied by a factor ).; the geometric parameters m, R, C, 0*, C*, s become m, i.R,
CI;.. a*IJi.• C*I;.. is. Let the new structure be subjected to the same force field J as
the old one. i.e. two points having the same polar angle arc subjected to identical forces
per unit length. The stresses arc then the same at homothctical points so that the SIFs,
which arc limits of certain stress components times the square root of the distance from the
cr.lck tip, are ji. greater in the new structure than in the old one. Thus the functional !I'
verifies the following "homogeneity property" with respect to the geometric parameters:

2'(",. i.R. Cli... a*/.j).. C*/i., As•.~) = j).!I'(m, R, C. a*, C*, s, .~). (3)
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Fig. 3. Circular disk centered at the crack tip in an arbitrary body.

Let 2'* be the limit of the functional 2' when s tends towards zero (this is the functional
that gives k*). Taking the limit s - 0 in eqn (3). it is easily shown that 2'* satisfies the same
homogeneity property as 2' :

2'*(m. ).R. C/J..ll*/j).. C*/A.. J) = j).!fl*(m, R, C, a*, C*, J). (4)

We now come back to a body of arbitmry shape (Fig. 3). We consider. within the
body. circular disks of centre 0 and sutliciently small radius R for the crack to intersect
their boundary and to be traction-free within them (this is possible since the crack is
supposed to be traction-free in the vicinity of its tip: see Section 2). Let .f(R. s) bc the force
field on the boundary of the disk of radius R which results from the application of the
prescribed tractions tl' and displacements ul' on ao, and oOu. when the crack cxtension
length is s. The SI Fs arc unchanged if onc eliminatcs thc exterior of the disk of radius N
while excrting the force lield .f(R•.I') on its boundary. Therefore they can be expressed.
using definition (2) of Y. as

k(s) = 2'[m, R. C. u*, C*, s•. ff(R, s»). (5)

We now let s tend towards zero in this equation, R being fixed. Then 2' tends towards
2'* und .ff(R.s) tends towards the stress field J(R) exerted on the boundary of the disk of
radius R before the kink, because of the property of continuity of the stresses at a fixed
point established in Section 3. Therefore eqn (5) becomes:

k* = limk(s) = 2'*[m.R.C.a*,C*,J(R»)..-0 (6)

Note the rem'Hbble property that the 51 Fs jllst ajia the kink depend only on the stress
lield hL~/im' the kink. It remains to show that they depend on it only through the initial
SIFs.

Using the homogeneity property of 2)* (eqn (4» with A. = IIR and the linearity with
respect to the force field, we transform eqn (6) into

k* = !I'*[m,I.RC.JRa*,RC*.jRJ(R)]. (7)

In intuitive terms. this tmnsformation corresponds to looking at the disk of mdius R
through a magnifying glass. Now let R - O. The traction t = (11,.. I1rll) on the boundary of
the disk of radius R admits an expansion of the form

t = k,. fi +Tg(O) + [hphp(O) +Ckph,,(O»)jR+ O(R) (8)

where k t • k 2• T. hi. h2 are coefficients (k" k 2 and T are the initial SIFs and non-singular
stress). This is the classical Irwi!l-Williams stress expansion for a straight crack except for
the corrective term Ck,.iip(O)JR due to curvature; the existence of this corrective term and
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the detailed expression of the functions 6,(0) involved are established in the work of Ting
(1985). Therefore

Furthermore the functional g>*(m. I. RC. fla*. RC*.·) tends towards g>*(m. 1.0. O. 0.')
when R tends towards zero. Therefore eqn (7) becomes in this limit:

(9)

where F(m) is a linear operator depending only on m and k the vector (k ,. k~).
It is observed that all curvature parameters vanish in this final expression: in intuitive

terms, this is because the crack and its e:'ttension appear as straight in the limit ofinfinitesimal
disks. It is easy to see that the geometric parameters omitted for simplicity in (2) would
vanish in the final result as well. were they included in the notation: for instance the first
derivative of the curvature of the main crack at the point 0 would appear multiplied by RZ

in (7) and consequently vanish in (9).
Equation (9) establishes the result announced. The above proof is the first one which

applies to fully general situations: other authors have given proofs under more or less
restrictive hypotheses: Cotterell and Rice (1980) for a nearly straight initial crack with a
small branching angle in an infinite body. and Sumi et al. (1983) for a straight initial edge
crack with a small branching angle in a body of arbitrary geometry.

An expression such as (9) will be termed uflil't'r.wl in the sense that it depends on the
geometry and the loading ollly through loml panlllleters characterizing the cr.lck shape
Ilear the initial crack tip and the initial stress field (here the branching .lOgle and the initial
SIFs). In contrast, a nOll-lmil'cr.wl expression will depend on the geometry of the entire
body considered and/or on the whole tnlction and displacement fields imposed on its
boundary. and will therefore require a specific evaluation in e.lch p.lrticular case.

S. OIFFElWNTIAIlILlTY OF TilE STRESSES AT A FIXED POINT WITH RESPELl TO TIlE
CRACK EXTENSION LENGTH

The object of this section is to show that the displacement u(M. s) and stresses a(M,.I')

at a tixed point Marc dillcrentiable with respect to s at s = O. and th.,t the corresponding
derivatives tlu/tJs (M.s = 0) and va/os (M.s = 0) arc independent of the curvature pa­
rameters a*. C* of the Cnlck extension.

We will use the following cl<lssical mathematical result:

Proposition. let f be a real function of a real variable x, defined for x ~ O. continuous
at x =O. differentiable for x > 0 and such that rex) tends toward .1 limit I when x tends
towards zero. Then f admits a (right-hand) derivative equal to I at x =O.

For every s > 0, the crack propagates regularly. i.e. with a continuously varying
tangent. Therefore Ricc's formulation of thc theory of Bueckner's weight functions (see for
example Ricc, 1985) can be used to evalwtte the derivative (Ju,/iJs (M,s), yielding

(to)

In this equation E and \I arc Young's modulus and Poisson's ratio and k;,,(M.s) denotes
the pth SIF at the tip of the crack extension of length s which results from the application
of a unit point force in the direction Cj at the point M. tile portions vO, and cO. of the
boundary of the body being simultaneously subjected respectively to a zero traction and a
zero displacement. Differentiating eqn (10) with respect to the coordinates of .'-t. we also
obtain
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(II)

The quantity ck,,,/(~Xj (.\I.s) in (II) can be interpreted in the same way as (p(.\I.s).
replacing the unit point force exerted on J~l by a unit "dipole" like in Section 3. The right­
hand sides of eqns (10) and (II) tend towards the limits (~(I-~.l)'£)k~k,~(M) and
(2(1-r1).£)k;Ck,~!(~x/(.~l)when s tends towards zero. Furthermore u,(.\I.s) ~nd cUdty, X

(JI. s) were proved in Section 3 to be continuous with respect to s at s = O. Using the above
proposition. we conclude that Id ;\-t. s) and clIRx i Pl. s) (and hence the stresses) are
ditferentiable with respect to s at s = O. and that

(I~)

( 13)

It is now easy to show that (JII)i'!s (M.s =0) und I~ cS(r"'U)I~X,) (lll.s = 0) (und hence
t'rr/I's (M.s =0» arc independent of a* and C*. lnth:ed the Sih hefore the kink are
independent of the curvature parameters a*. C* of the til/ure crack extension; since the
Sirs jllst after the kink have becn shown in Section 4 to depend only Olt those hefore
the kink and the hranehing angle. they arc also independent of a* and C*. The same
argument applies to thc k,~(M)s and iJk,~/(h:, (M)s. E4uations (12) ami (13) imply then
thatllu,jl~s (M. s = 0) and iJllls (iJu,jiJx;) (M. s = 0) arc also intkpcndent of a* and C*. This
concludes the proof.

It is worth noting th;ltla(J/.s) ;lIld rr(M.s) arc 11111 twil:e dilrcrenti;thlc with respect til
sat s == O. Indeed. anticipating (sec Section 6 below) th;tt the expansion of k(s) contains a
term rroportional to Js. one notes that the expressions (l 0.11) of I'U, tS (M. s) ;lIld
i1/I's (I'U.!I:X ,) (M. s) contain also such terms. This shows clearly if necessary that the
regularity properties ofu and a studied in Section 3 and here cannot be simply accerled as
"intuitively evident" and need to be established in a rigorous way.

o. SECOND TERM OF TIlE EXPANSION OF THE STRESS INTENSITY FACTORS IN POWERS
OF TilE CRACK EXTENSION LENGTH

The second term of the expansion k(s) in powers 01'.1' can be studied by the same kind
of method as the first one. carrying all expansions up to order ./.1' instead of sf) = I.

II is proved in Appendix A that the expansion of the functional .!f in powers of s docs
not contain any term proportional to sIJ with 0 < II < Ii2 (this is in l~lct a conseq uence of
the crack extension shape. as described by eqll (I I). Thus it is of the form

:1'(111. R. C. a*, C*. s.·) = 2'·(111. R. c..) +2' l l z'(I/1, R. C.II*. C*. ·) ..../s+ o(Js) (14)

where the ,Irguments a* and C* have been omitted in the functional!!'· since k* (and
hence 2'*) have heen shown in Section 4 to be independent of these panunetcrs.

Using (14) to exp~lnd (3) in powers of s. we get

r>*( 'R C/' 4) rO(I/')( )R C/' */ r; C*/' f) /:- (r)2 m.i.. 1.•.7 +..L. • 111•. •. i.• a y/.. I.,. Yi.S+O \IS

=JiZ*(m. R. c..')+./X:pl1 11(1/1. R. Ca*. c*..nJ.;+O(....!~).

Identification of the tcrms of order J's in both sides of this cquality yields thc following
homogeneity property for 2Jll:~):
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~n/ZI(m, A.R, C/A.,o*/ji, C*/A.,J) = ~(1121(m, R, C. 0*, C*,J), (15)

which differs from that for ~* (eqn (4» by a factor.ji.
The results of Section 5 imply that the force field J(R, s) on the boundary of the disk

of radius R is differentiable with respect to s at s =O. Therefore its expansion in powers of
s is of the form

J(R,s) = J(R)+J(Il(R)s+o(s). (16)

Using this expression, eqn (14) and the linearity of the functionals with respect to the force
field to expand expression (5) for k(s) in powers of s, we get

where k* and k( 1121 are given respectively by (6) and

( 17)

Note that k0!21,just like k*, depends only on the stress field .f(R) htfore the kink. This is
a direct consequence of the absence of a j; term in the expnnsion of .f (R, s), Le. of the
dilTerentinbility of the stresses with respect to s at s = O.

Using (15) with A. = I/R, we transform (17) into

k(1121 = .!t'(I121[m, 1, RC, jRu*, RC*,.f (RH.

Ex.panding now the functional !i/( 1121(m, 1, RC, jRa*, RC·,') in powers of R and using
elJn (Xl for t = (0',.. 0"'/)' we get

I
k l Ul = y(lIZI[m, 1,0, O,O,k,{ fp(lJ)}J jR +g(l121[m, 1,0,0,0, T( ~(lJ)}]

fJy(1121_
+u* a;;;- [m, 1,0, O,O,k,{ fp(O)}J +O(jR).

This equation holds for every R, which menns thnt the right-hnnd side is in fact independent
of R. Therefore the divergent R- 112 term must be zero. The 0(./R) term is also zero,
because it must be constant while tending towards zero when R -+ O. The expression of
kl121 becomes thus

iJ~(1121

k" 21 = y(l'21[m, 1,0,0,0, T{ ~(lJ)}J +u* ao. [m, I, 0, 0, 0, k, {f,(O)}}

= TG(m)+a*H(m)'k (18)

where G(m) and H(m) arc a vector and a linear operator depending only on m. Hence k( I 21

has a Imil'ersal expression (in the sense defined in Section 4) like k*.
In the particular case of a straight initial crack with a nearly straight extension (small

parameters m, a*, C*), Karihaloo et 01. (1981) and Sumi et ai, (1983) obtained expressions
of k( l, 21 which fit into the general form (18), These expressions appenred in those works as
the beginning of an infinite expansion in powers of m, 0*, C*, Equation (18) indicates that
quite remarkably, the only powers of 0* and C* involved in this expnnsion are in fact 1
and u*,

Wl\:lI-r
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7. THIRD TERM OF THE EXPANSION OF THE STRESS INTENSITY FACTORS IN POWERS
OF THE CRACK EXTENSION LENGTH

The functional 2' is now expanded up to order O(S):

Y(m. R. c.a·. C·,s.·) ::; Y·(m, R, C, ')+2'(1 Z'(m. R. c.a*, .)~

+y(ll(m. R. Ca*. C*, ')s+o(s) (19)

where the argument C* has been dropped in yl!, z, since (18) implies that k( I Z) and
yll :, are independent of this parameter. The O(s) dependence of the third term of the
expansion can be justified in th~ same way as the O(~) dependence of the second one (see
Appendix A). Expanding eqn (3) up to order O(s) and identifying terms of this order in
the resuhing identity. we get the following homogeneity property for .!l'( I':

5/'1 I)(m. A.R. C/).. a*/fl. C*/).•.f) ::;~ 5/'"I(m, R. C. a*. C* ..f). (20)
JA.

Wc expand now eqn (5) in powers of s. using (16) and (19) ; wc obtain thus

(21 )

where

or equivalently hyeqn (20) (with).::; I/R):

k(l) ::; f*[m. R. C..flll(R)! +5/III)[m. I. RC. JRll*. RC·, ~"" .f(R)]. (22)
y' f~

This equation shows that k( II. unlike k· and k(lf2" depends on the stress field .f(R. s) ajier
the kink, through its derivative .fl II(R) with respect to_s at s ::; O.

We expand now the functional !LJ(l)(m. I, RC. JRa·. RC*, ,) in powers of R .lIld use
c4n (8): cqn (22) becomes

I
k' II ::; .!!'*[m, R. C. JIII(R») + !iJI Il[m. 1.0, O. 0, k" {fp(O):-) R

+,;tJ( 11[111. I, O. O. 0, T{g(O)}) ~:: +a* ~t~l~ [111, 1,0,0,0, kp{fp(O):) -/'.::
JR I!ll 'Ii R

+5//(1)[111, 1,0,0, O. hp {h,,(O)}j

:'l

+ CiCIo-, [Y( Il(m. I, C, O. O. kp {~.(O) +cii,.(O)} He .0
I.

(23)

The left-hand side of this equation is independent of R. In the right-hand side. all terms
from the fifth to the ninth are independent of R, and the last one tends towards zero with
R. Hence the sum of the first four terms has a finite limit for R -+ 0:
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I
..'l'*[m. R. C. ..I 111 (R)] +2'1 ll[m. I. O. O. O. kp{ fp(O):] R

I "ylll I
+SfI Il [m.1.0.0.0. ng(O)}] -:= +a·~ em. t. O.O.O.kp{fp(O)}]~ = 0(1).

,R ro JR

Now (13) implies that Jlll(R) depends on the loading only through the k;s. i.e. through
the kps by (9). Hence. in the left-hand side of the above equality. the third tenn is the only
one which depends on T. Since it is divergent. it must be zero. (To see that, vary the value
of T in the above equality.) Similarly. the fourth tenn is the only one which depends on
a*(JI "(R) is independent of this parameter: see Section 5) and diverges. so it must also be
zero. Hence the above equality implies that Sf·[m, R, C. .1'1 Il(R)] is the sum of a divergent
tenn SfIll[m.1.0.0.0.kl'{fl'(O)}]iR and a tenn which has a finite limit for R-O. This
limit will be called the principal part of g'*[m. R. C...1'1 ll(R)] (for R - 0) and denoted Z:

Letting R -> 0 in (23) .tnd using (24). we get the final expression of kill:

where h is the vector a'i. /I z) and I(m). ,'(11I). K(m). I.(m). M(m) vectors or linear operators
whidl dcpend only on m.

The last live terms in the right-hand side of (25) arc universal in the sense delined in
Sl.'ction 4. On the other hand a detailed analysis of the Z term (sec Appendix B) shows th<lt
this lj~l<llltily is not universal. bccause it docs not depend only on local geometric parameters
hut also on tltc far .tlcomctry (~l tltt' /1(1((1' nll/.vic/crcd.

Equation (25) conlirms and extends the results of Sumi et al. (1983). These <luthors
were lirst to note the loss of the univers<llity property in the third term of the expansion of
k(s) ill puwers ofs. in the particul<lr case ora stmight initi<ll edge crm.:k with small par'lmeters
m. II·, C*. They obtained kill as a sum or three universul terms proportional to b, a* T und
(''Ok. in accordance with ee.Jn (25) (the term proportional to Ck was absent because of the
assumed struightness or the initial cruck and that proportional to a*1k because the treatment
W.IS limited to the Iirst order in m. "., C·), plus a non-universul one Z. The latter e.Juantity
W.IS not interpreted as the principal part or 2'*[m. R, C, .J'IlI(R)] but its dependence with
respect to the kink angle (to the Iirst order) and to the loading was made explicit. This is
also lc'lsihle. in the most generul case. using the present approach; the derivation is given
in Appendix B.

K. CONCLUSION

We will Iinally outline how the results derived above can be used for numerical
predictions of crack paths. propagation being supposed to obey the principle of local
symmetry (PLS) ofGoldstein .tnd Salganik (1974). (This criterion has bet::n used by numer­
ous authors .tnd will he fully justified in the subsequent papers.)

According to the PLS. k 1(s) is zcro along the w~olc propagation path. One must
therefore equute to zero the successivc tcrms k!. k~1 1) js. k1

2
11S ••• of the exp.tnsion of k 2(s)

in powers of s. Using eqns (9). (18) and (25) for k·, k( 1/1) and klll• this will yield the values
of the paramctcrs m. a* und C· characterizing the shape of the future crack extension, in
tcrms of k. T. Z. b. It is thus possible to predict the crack path by a step-by-step method.
each step involving a numerical evaluation of k, T. Z. b and an extension of the crack by
a remeshing procedure.

Onc importunt drawbuck of this method is that the numerical evaluation of T and b
is a ruther difficult task if a good accuracy is asked for, not to mention that of Z which is
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even harder. whichever expression of this quantity (its definition as the principal part of
2'*[m. R. c..1"( Il(R)] or the detailed expression (B5) derived in Appendix B) is employed.+

It is possible in this respect to give other expressions of k
ll ~l and kill more suitable for

practical purposes. Indeed. for a straight extension. eqn (18) for kll ~l reduces to

Hence kl I. ~) can be written in the general case under the form

(26)

The numerical evaluation of T can thus be replaced by that of [kll ~l]~~"~ I). which can easily
be performed by comparing the initial SIFs with those at the tip of a short straight extension
in the direction 7tm (7tm being previously determined from the condition k! = 0). In the
same way. if we consider a crack extension having a zero C*. eqn (25) for kill reads

[k("]~~'~'O = Z+ I(m)' b+CJ(m)' k+a*TK(m) +a*~L(m)'k.

Let us now introduce a non-zero C*: since !.I'* and .f lll have been proved in Sections 4
and 5 to be independent of this parameter. this does not change the value of Z which is the
principal part of 2'*[m. R. C. .,,1 Il(R») for R .... O. nor that of the other terms in the right­
hand side of this equality. Thus (25) C.IO be rewritten as

(27)

The numerical evaluation of Z is then replaced by that of [kll)I;~'~'~'1I which can be done hy
comparing the initial SIFs with those at the tip of a small extension having the values of
7t1l/ and tl* determined previously from the conditions k! = 0 and k(~I,!) = O. but a zero C*.

It should be noted that in this approach. the non-universal ch'lracter of the expression
of k( II is not an import,lOt disadvant'lge: indeed the non-universal quantity [k' 111:~~'~'1I can
always be computed numerically with relative case in each particular case. the essential
point being that it is independent of the parameter C* which is unknown tll'riori.

The use of this method requires. of course. knowledge of the det<lilcd form of the
universal functions 1

'
(m). H(m). M(m) involved in the determination of 7tm. tl* and C*

from eqns (9). (26) and (27) and conditions k! = O. k~li!) = O. kl~1l = O. The incomplete
knowledge of the functions lI(m) and M(m) was predsely one of the m<lin drawbacks in
Sumi's (1986a. b) studies of crack paths in configurations of practical interesq The com­
plete determination of these functions will be the subject of the next paper.

A..kt/oll·"·cl/I"m,·t/I- The author expresses his deep gratitude to Prof. M. Amestoy. the co-author ufthe subsc4uent
papers. whu .....as the initiator uf this study by puinting out the impurtance uf e'tending the results uhtainahle in
sume particul;lr cascs tu fully general situations.
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A('PENDIX A

The 'lim "I' tillS Appcndix is (i) to show the n~'Cessity of considering crack elltensions with shape characleril.~"l.(

hy eqll (I) alll.l (ii) I" juslify Ihe form (eqns (14) anl! (1\))) of the expansion of :I' in powers \,I'.v. (These lIueslions
arc str"n~ly lielll,,~ether. as will be seen.) For this we will suppose that Ihe expansion of,vl in powers ofy, and
Ihat "I' :/' in powers or.v arc of the form

(AI)

(I\::!)

wilh II < 1( ,:; Ii::! and II < II ~ I/::! (and of course y. ~ O. Y'" ~ 0), and show thaI n..-cessarily IX == II == I ::!. A
,imil'lr re'lst'ning can be made to show Ih,lt if these e.\pansions contain terms proportional lo,v: ,,' and .,JI' with
I .! < 1(' ,0;: I and 1/1 < II' ~ I. Ihen IX' == II' == I. _

The reasoning follows the s.t111e lines as Ihat in St.'Cli,m 6, replaeing !r Ill'. Js. and t/. by Y"'..,JI and , •.
When dimensions are mulliplied by;', ,. is divid.."l.I by;". Therefore the homogeneity property of Y reads (instead
or(J)):

!/'(III,;'R.C/l. y·/l',j) == JiY(m. R,C. y.,j).

Expanding lhis equation in powers of s using eqn (A2), and idenlifying lerms of order .,JI. we gel

(A3)

The e\pansion of !i.(.v) is readily obtained by inserting eqns (16) and (A2) into eqn (5):

where

Using elln (;\3) with;' = 1/ R. we transform this equation inlo

(:\4)

let us now assume Ihat p < 1(. Ellpanding Y'''(m. I. RC, R',·.·j in powers of R and inserting the resull and
eqn (X) inlo eqn (;\4). we get

t Since 0.1', is tangent to the crack extension at the point 0 (see Section 2). the expansion of Y: in powers of
.1', cannot contain any term proportional to y~ with 0 ~ :x ~ I.
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Since the left-hand side is independent of R. the divergent R-d term in the right-hand side is necessarily zero.
Therefore this equality yields. in the limit R - 0: k'#' "" O. which implies that :t"d' "" O. in contradiction with our
basic hypotheses.

Our assumption that fJ < :t is therefore absurd. which means that the expansion of It' in powers of s does
not contain any non-constant (with respect to s) term with exponent smaller than x. Thus the first non-constant
term has exponent p "" :to

Let us then assume that :t < 1,2. E.'lpanding eqn (A~) as above. we get

where the divergent R -. term has been discarded because it is zero by the same argument as above. Taking the
limit R - O. we obtain

(AS)

where IJ) is a linear operator depending only on m.
We now take into account the fact that the crack e,'ltensions to be considered must be obtainable by actual

propag'ltion of the crack. Adopting the PLS as a criterion (this witl be fully justilied in the subsequent papers).
we must equate to zero the successive terms k!. k~"s' ... of the e~pansion of k ,(,f) in powers of s. The first
wndition. k! = O. yields the value of the kink angle TUI/. The second condition. 1..':" "" O. yields upon use of eqn
(A5):

(M)

when:- thc fl',,,/s dcnllte II ..: COll1pl.nents of (I»(m). Except 111 exceptillnal cases. fl': ,(m)k, + (I' ,,(m)k.' has no rcason
to hi: Icrn li,r thc v;lluc Ilfm determincd rrnmlhc condition k! = 0, IIcnce e'ln (Ah) implics that I'· must ne Icrn.
in contr;ldiclion wilh our naSic hypl.thescs,t

W,: cOIll:ludc Ihat our assllmplilll1 'X < I 2 is wrong. i.e. that 'X "~ {I = 1/2. Q.E.D.

AI'I'E:"DIX II

Thc ohil'cl or Ihis Appcndix is to sludy thc term Z of e'ln (25) in nwn: detail. This will allow us (i) tu
sun,lauliale Ihe slalcmcnt madc in Secliun 7 Ihat this tcrm is ""I/·/min"""l; (ii) tu rc-dcrive the rcsulls or Sumi
,,/ til. (1911.\) ny a dilTcrentmethud and 10 exlcnd thcm 10 fully general situalions. Thcse aUlhurs unlained. in Ihe
particular case or a straighl inilial edgc crack with small parametcrs m. ,,', C'. Ihe folluwing expressions of the
cumponents uf Z :

Z I = [[II - (f" + Jf" )ttmlk ,+ If,,-- (fll + Jf,,)ttmjk, +O(m') ;

Z, = [f" +(~f -f::)ltm}, +[f::+(€Y -f,,)ltm},+O(tf/')' (Ill)

In Ihcse el.juations I.. I .Ind k, denote as usual the initial SII's and Ihe ;,'.s Cllcllicienls which depend on thc whole
gcometry of thc nudy and the inilial cmck ;lOd on thc partilion (.'n,.•'nu ) or .'n. hut arc independenl or the
p;lrameh:rs m. " •. C' characleriLing the crack eXlension shape. and also of th.: loading.

Firsl we will make .:.'lplicitthe dep.:nden,c of ,'II,/I'S (.\I.s = Uj \\oilh respect to fII and the loading in ':'In (12).
El.jllalion (9) rea<b. in component notation: k~ = F.,(fII)k,. The ( .... (.1I Is introduced in S~'Ction 5;Ire given similarly
ny ( .... (.\1) = F.. (m,(, (JI) wheref... IMI is Jclincd in Ihe samc way as(,(M.s) and f,~(M) (sceSeclion 5). except
thaI the 51 F is to he taken at Ihe tip of the initial crack. Thererore e'ln (12) ';In he rewrill.:n as

<lr. inlrOlllll:ing thc vcctur it,(.lI) = [k"I,lIl.k,.(.\/lj;lnJ dropping indications of Jependellce of the I'~.s upon m
li,r simplicity:

IB2)

The tr;lction

t This phenomenon dlleS not happen with the corr~'Ct exp;lnsions (sec (I). 1I~). (19)); inJ~"Cd the second
condition reads Ihen k':':' = O. i.e, bycqn (18): TG:(fII)+uO[H:,(m)k,+H::lm)k:l = O. which yicldsgenerally a
non-lero value for 1/'.
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Ct [caw ca~ ]2:/\f.s=O)= a; (M.s =0). --r;('''f.s=O)

1315

corresponding to the displacement field {,'u:cs(M.s =O)} is deduced from this displacement by differentiation
with respect to the coordinates of M. application of the elasticity operator and contraction with the vectors e"
e•. This can be written symbolically ct.cs (M. s = 0) = t,,' cu,cs (M. s =0) where t" is a linear differential
operator depending on Jf. Application of this operator to both sides of eqn (B2) yields then. noting that in the
right-hand side. the only term which depends on M is k,,( !.f). and incorporating the 2( I - v~1 E factor into t,,:

ct _
:;-(M.s = 0) = Fw.F...k.L" ·k,(M).,s ..

.If*[m. R. C. J' I)(R)) = .If*[m. R. C. {,'t/,'s (M.s = OJ}) can thus be written. omitting the arguments m. R. C in

.If* for simplicity and using the linearity with respect to the force field:

(B3)

It follows from the fact that the f ..{M)s are defined as SIFs at the tip of the inilial crack that the force
field :L,,·ii.,.(Mll is independent of the kink angle /[m. Therefore the components of !I'*UL'I·ii.,(Mn) =
.:1'*[",. R. C. {L'I' ii.,{M)}) are given. using eqn (9). by

where k.,( R) denotes the qth SIF at the tip of the initial crack arising from the application of the force field
{L.,· ii..(Mll on thc boundary (If the disk (If radius R. Insertion of this expression into eqn (83) yields

(84)

Now we know by eqn (24) that 2'*[.""J is the sum of a divergent term prop,..rtiol1allo R -, plus an,'ther
term which has .1 finite limit f,'r R -l) (which we have called its prindpal {'(Irl Z). Sinee in lhe right-hand side of
ell" (84). the only term which dcpends on R is (,.,{R). this quantity must also he the sum of a divergentlerm
proportional to R' I plus .mother term which has a finite limit for R - 0; this limit will ag'lin he c'llled the
principal part of (,..( R) and dCI\(.ted k",.. Taking Ihe principal parts of both sidcs of (B4). we gct then:

i.e, in matrix nOlation ([.rl' denoting the Iranspose of [.rll:

IZ I '" [/"(",)I[[I[F(",II r(F(",)l[kl (US)

where indications of dependence upon III have heen restured.
The interpret'llionof the [f! matrix in eqn (US) ean he summarized as follows: f..{M) is the Ifth SIr: at the

initial cr.lck tipcre'lted by a unit point furce in the direction e, exerll.'t1 on the point M. DO,/DU. being simultaneously
subjected to a zero traction/displacement; kl"l(R) is the pth SIF at the initial crack tip which results from the
application. on the boundary of the disk of radius R. of the stresses deriving from the displacement field
u,(.\1) = (2(1- v')/E)k,.(M). u~(.\1) = (2{ I - v~)/E)f~.(M); and kl"l is the principal part of k,,,,( R) for R -. O.
i,e. ils limit once its divergent R 'part has h<.'Cn subtrach:d.

From this follows th'lt the If! matrix depends on the geometry of the entire body and the initi'll crack and
on the partition (,:0,. i'll..) or ,'0 (it is a nml-unicrr.wl quantity). but not on the geometric paramelers til. a*. C*
of the cr:lck extension nor on the loading. Thus the inlluences of the various geometric and mechanical parameters
'Ippear as nicely s<:par:lll.'t1 in the expression (85) of Z: Ii) that of the loading. through the SI!,s at the tip of
the initial cr:lck ; (ii) that of the branching angle. through the [f'J and [F) r matrices; and (iii) that of the geometry
of the body and the initi:ll crack (including the p:lrtition or ,'0). through the [f) matrix. The third inlluence is in
f.lct the only one of non-universal charactcr.

Comparison between our result and that of Sumi ,'I ul. (19113) rl.'quires an exp:lnsion of (85) to the lirst order
in m. The lirst-order e~prl."Ssion of the f',.,s • •IS given for inst.\IIce by Wu (1979). is

3/[
Fdlll) = - Tm+O(m'):

Inserting these formul:ls into (85). one obtains first·order expressions for the components of Z which coincide
with eqns (III) of Sumi rl al.

In the work ofSumi':l al.. the f,.,s were interpreted as the SIFs at the initial cmck tip which result from the
application of OUl.'Ckner·s (1972) fundamental force and displacement fields (proportional to r- m and r ~ ",
resp<."Ctivcly) on (:'0, and (:0.., It is possible. though somewhat intricate. to establish the corrl."Spondence between
this point of view and ours. Ilowever it must he stressed that the interpretation of Sumi el al. is valid only in the
particular case studil.'t1 by these authors of a slraighl initial ed,qe crack. and that the (admittedly less simple)
interpretation given here is the only possible onc in the general case.


